029-35972307
13636736531
4008896788

您当前的位置:首页 > 新闻信息 > 详细内容

i 新闻资讯 nformation

荧光粉(夜光粉)为什么会夜光?原理是什么?

2024-01-18

荧光粉之所以有荧光现象是因为含有荧光染料。下面解释一下荧光过程中荧光染料分子经历的变化。电路板拆解,重金属回收,电器拆解,荧光粉,pcb线路板

    分子也是由原子核和电子构成,电子具有能量,大致分为原子核对电子的吸引,电子-电子排斥,以及电子相关能量。前两项是经典库仑相互作用,最后一项来自于量子效应。这几项组合的结果就导致了分子中电子的能量只能去一系列离散值(这也是量子效应),我们通常把这些能量的可能取值叫做电子能级。具有某个能量的电子具有某种对应的运动状态,通常叫做分子轨道。在我们采用一系列近似后,可以认为每个分子轨道上可以放两个电子,这两个电子的自旋相反。一个分子内的电子数目是有限的,但分子能级(及对应分子轨道)的数目无限。分子稳定性要求整个分子体系总能最低,所以电子会从能量最低的轨道开始排,N个电子会占据 N/2 个能级,这就是基态的电子构型。电子能级的间距一般为几个电子伏特(eV)。

    影响一个孤立分子能量的因素除电子态以外还有分子的振动,其实就是原子核们会在平衡位置附近有小幅运动。这种运动表现为键长,键角,二面角以及更复杂的几何因素的变化,量级一般在 0.0025 到 0.5 eV。通常可以把电子能级和振动能级分开处理,可以得到下面的 Jablonski diagram,这里只列出了两个电子态 S0 和 S1。每个电子态都可以看做一个振动态的 manifold。


    现在先看光子的吸收。起初分子处于基态,就是 S0 的 0,一个能量合适的光子打过来后,电子吸收了这个光子的能量,跳到第一电子激发态的第三振动激发态。这个过程中能量是守恒的,分子体系能量增加了 \hbar\omega, \hbar 为普朗克常数除以2\pi,\omega为光子角频率。当然,如果光子能量稍多或稍少,电子会跳到更高或者更低的某个态上,如果这个态存在的话。吸收完成后,分子处于一个不怎么稳定的状态,有放出能量回到基态的趋势。这个放出能量有多种途径,比如图中的红色箭头,是振动能级的弛预,通过分子之间的碰撞等过程把振动能量变成分子动能,宏观上来看体系温度升高,也就是变成了热。通过某种方式弛预到第一激发态的振动基态后,发生电子跃迁,回到电子基态。这个跃迁的终态也是有多种可能的,可以回到电子基态的任意振动激发态。这个过程中,体系发出光子,能量降低,即为荧光。从吸收到发射中间有一个时间差,可以认为这是电子激发态的寿命。随体系不同, 激发态寿命会有很大差别。比如某些血红素蛋白为几十个飞秒(1E-15s),苯酚的第一激发态寿命大概在几个纳秒(1E-9s)。激发后,荧光强度随时间指数式衰减。

相关产品
相关新闻